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This paper has resolved the difference between two well-known equations in marine hydro-
dynamics. It shows that when a rigid body enters a liquid, the forces obtained by integrating
the pressure over the body surface and by an energy argument are in fact identical.
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1. INTRODUCTION

BASED ON VELOCITY POTENTIAL THEORY, it is well known that when a rigid body moves in an
unbounded fluid domain, the hydrodynamic force on the body is equal to its added mass
multiplied by its acceleration. When a body enters into a liquid (fluid/structure impact), the
situation is somewhat different. The case may seem simple enough, but different equations
for calculating the force have emerged. A well-known example is the difference between the
results of Faltinsen (1990; p. 286) and Miloh (1981). They both adopted the same mathemat-
ical model in which the free surface is approximated by a flat plane and the potential on that
plane is zero during impact, but Faltinsen obtained the force by integrating the pressure
over the body surface, while Miloh obtained the force based on an energy argument. It was
found that when the speed of the body is constant, their results differ by a factor of two. The
problem has been further highlighted by Molin, Cointe & Fontaine (1996). They considered
a case of a circular cylinder and argued that the contradiction could be resolved by
including a jet developed during the impact. This however, seems, not to be the full solution
to the problem. There are still a few questions unanswered: (a) whether including a jet will
resolve the contradiction for other geometries; (b) more importantly, neither Faltinsen nor
Miloh has included the jet in their analyses, and one cannot add the contribution from the
jet to one equation but not to the other; and (c) how to resolve the difference for a fully
submerged body where no jet is present.

In this work, we shall show that the force obtained from the pressure integration over the
body surface is the same as that obtained from the energy argument. It has to be stressed
that the present analysis does not attempt to offer any new mathematical model for the
fluid/structure impact problem. The purpose here is to show that, based on the mathemat-
ical model used by Faltinsen (1990) and Miloh (1981), there should be one equation for the
impact force. Whether their mathematical model reflects the physics of the problem is not
the main concern here. Having said that, this model can be traced back to von Karman
(1929) and Lamb (1932). It has been used ever since for various impact problems. More
recent applications include that by Cooker & Peregrine (1995) for wave impact on a wall.
0889—9746/98/050549#11 $30.00 ( 1998 Academic Press
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Although this model is based on some drastic simplifications from a hydrodynamic point of
view, it does give some useful results for the loading on the structure in many cases [see, for
example, Faltinsen (1990)], which is the main concern of this paper. A more accurate model
which includes the deformation of the free surface has been used by Zhao & Faltinsen (1992)
and Korobkin (1997).

2. COVERNING EQUATION

We define a Cartesian system O-xyz, with the origin being on the undisturbed free surface
and z pointing upwards. We consider the problem of a body entering water with vertical
speed ¼ (negative ¼ means that the body moves downwards). The mathematical model is
based on the theory for an incompressible and irrotational flow, using a velocity potential.
The free surface is approximated by z"0 and the potential on this flat surface is assumed to
be zero during the impact. The velocity potential then satisfies the following equation:

+2 /"0 (1)

in the fluid domain R bounded by z"0, the body surface and the bottom;

/"0 (2)

on the free surface S
F

which is approximated by z"0;
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on the body surface S
0
, where n is the inward normal of the body surface and n

z
is its

component in z direction;
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at the bottom of the fluid S
B
.

It should be noted that equation (2) automatically leads to /
t
"0 when z"0, which will

be used in the following derivation. There are two points which should be emphasized here:
(i) since we have imposed the condition in equation (2), we can no longer use L//Lz"0 on
z"0 and (ii) since the free surface is approximated by a flat surface z"0, the normal
velocity of the surface deformation, º

n
, is therefore zero. It is important to understand here

that the meanings of L//Lz and º
n

are different and one cannot automatically assume
L//Lz"º

n
on z"0. It is also important to understand that on z"0 the pressure
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z
is not zero, where o is the density of the fluid.

Strictly speaking, therefore, z"0 is not a free surface but an equipotential surface in the
hydrodynamic sense. This surface together with the condition on it is used as an approxima-
tion to the real free surface during the impact.

3. FORCE BY INTEGRATING PRESSURE

The force on the body can be found by integrating the pressure over its wetted surface
(below z"0 in this model):
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in which the hydrostatic term has been ignored. The derivative with respect to time can be
rewritten using the following transport theorem (Newman 1977; p. 57):
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dS,

where S(t) is the boundary of R(t) and º
n
is the normal velocity of the surface S(t). It should

be noted that S (t) in this equation does not have to be a material surface. Also º
n
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solely on S (t) and is not always equal to the normal velocity of the fluid particle on S (t).
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where S
C

is a control surface and it can be dropped from the above equation for the reason
described by Newman (1977; p. 133). Following the above discussion about º

n
and that

after equation (4), we have º
n
"0 on S
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"L//Ln on S
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and thus
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in which /
t
"0 on S

F
has been used. Substituting this into equation (5), we have
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Equation (6) can also be derived by an alternative procedure. We may use
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where the point (x, y, z) is fixed on the body. This gives
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If we use S
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y
where C

0
(t) is the waterline of the

body, on which the components of the normal are taken, we have
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Substituting this into equation (5) we obtain equation (6).
Equation (6) can also be writen as
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where M
a
is the added mass defined as
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and t"//¼.

4. ENERGY ARGUMENT

The kinetic energy in the fluid is
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where S"S
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. Using the boundary conditions on S

F
and on S
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in equations (2)

and (4), we have
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We now apply the transport theorem to equation (9):
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As discussed after equation (4), º
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Using the boundary conditions in equations (2), (3) and (4), we have
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Substituting equation (10) into equation (12), we obtain
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This equation may appear to be quite different from (7). As we shall show below, they are
in fact identical.

5. AN IDENTITY

We shall prove the following identity:
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In fact, based on the definition of M
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and following the procedure leading to equation (6),
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The first term on the right-hand side can be written as
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after using conditions on S
F

and S
B
. From Wu & Eatock Taylor (1996) or from the

Appendix [equation (A7)], we have
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Thus,
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Furthermore, since (Wu & Eatock Taylor 1996)
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Substituting this equation into equation (15) and noting that Lt/Ln"n
z
, we can immedi-

ately obtain (14). Using this identity and comparing equations (7) and (13), we can see that
these two equations are indeed identical.

Based on the method of the equivalent flat plate, Faltinsen (1990; p. 286) showed that

F"!

dM
a

dt
¼ (17)

when ¼"constant. This differs from equation (13) by a factor of two. In the derivation by
Faltinsen, however, it was thought that the contribution from the /

t
term is far larger than

that from the $/ $/ term and the latter can be neglected. This might be true for the
pressure, but equation (16) clearly shows that such an assumption is not correct for the
force, or the integrated result (see also Section 6.2). Equation (17) therefore is an approxima-
tion and differs from the correct solution by a factor of two.

Equation (13) may seem to contradict the well-known equation for rigid-body motion,

F
e
"

d

dt
(M¼),

where F
e
is the external force on the body and M is the body mass. However, equation (13)

is, in fact, the force applied by the body only to the fluid. There will be a force from other
boundaries of the fluid. For this reason, we cannot automatically expect that the mo-
mentum change of the fluid is equal to the force applied by the body.

6. DISCUSSION

6.1. FULLY NONLINEAR CASE

It is important to notice that the foregoing discussion has been based on the assumption
that the free surface is approximated by a flat surface on which the potential is zero during
the impact. When the following fully nonlinear free surface boundary conditions are used:
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where f(x, y, t) is the free surface elevation and g is the acceleration due to gravitation, the
force should be obtained from the equation derived by Wu & Eatock Taylor (1996),
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in which t satisfies the Laplace equation and the following free-surface and body-surface
boundary conditions hold:

t (x, y, z, t)"0 on z"f (x, y, t), (21)
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It should also be pointed out that the hydrostatic term is included in equation (20).
For this case
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where º
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Substituting this into equation (25), we have
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Comparing this with equation (14), we find that there is an extra term here involving the
integration over the free surface.

6.2. IMPACT AT t"0

The fluid/structure impact can be divided into two stages: (i) from t"0~ to t"0`, and (ii)
t'0`. What has been discussed here corresponds to the second stage. When 0~4t40`,
the force impulse can be found as (Batchelor 1967; p. 471)

P
0`

0~

F dt"!M
a
¼ D

t/0
. (28)

This equation seems to suggest that the equation for force should be

F"!

d(M
a
¼ )

dt
. (29)

In fact, within 0~4t40` one may assume that the second term in equation (7) is much
smaller than the first one and its contribution may be ignored, as done by Faltinsen (1990).
The above suggestion appears to be valid, although equation (29) itself may have no
practical relevance. When t'0`, equation (14) clearly shows that such a suggestion is no
longer valid.

6.3. BODY MOVING NEAR A RIGID WALL

when a body is moving near a rigid wall, equation (13) is also valid, as shown by Lamb
(1932; Art. 137). The difference is in the definitions of the added mass. Although the added
masses in both cases are given by equation (8), the meanings of t are different. Here t"0
on z"0, while for the case of a body moving near a rigid wall, Lt/Lz"0 on z"0.

6.4. LAGRANGE EQUATION OF MOTION FOR A BODY NEAR A FLAT EQUIPOTENTIAL SURFACE

Lamb (1932; p. 190) obtained the force on a body by using the Lagrange equation of motion.
We shall verify that this equation is valid in the special case considered in this paper: a body
near a flat equipotential surface. The kinetic energy ¹ can be obtained from
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where the boundary conditions on the free surface and on the bottom have been used. Using
the definition in equation (8) and the boundary condition on the body surface, we have
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The Lagrange equation of motion gives (Lamb 1932; p. 190)
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where

X
3
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Substituting equation (33) into (32), we have
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which is identical to equation (13).

7. CONCLUSIONS

This work has shown that two different equations for calculating the force on a body
entering water are in fact the same. One by-product of the paper is equation (14). In
numerical calculation, the left-hand side is not easy to deal with, when all physical
parameters change sharply with time during impact. The right-hand side, on the other hand,
is much easier to calculate.
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APPENDIX

We consider here the problem that the body moves with translational velocity U and rotational
velocity X. The body surface condition for / can then be written as

L
Ln

[/ (x, y, z, t)]"(U#X]r) ) n, (A1)

where r is the position vector from the point where U is measured.
In taking the derivative with respect to t in equation (A1), it is important to notice that
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0
(t) and therefore they are a function of time when the body is in motion. We write
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It should be pointed out that the meaning of d/dt in the above equation is different from that used in
the Lagrangian description of fluid motion. The former follows a fixed point on the body while the
latter follows a given fluid particle. Thus, it is easy to establish that
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is a position vector from O and therefore dr
0
/dt"U#X]r. Substituting equations (A3)

and (A4) into equation (A2), we have
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Furthermore, when the point is fixed on the body surface, equation (A1) can be substituted into the
left-hand side of (A5). This gives

d
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Substituting equation (A6) into equation (A5), we have
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